Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Elife ; 112022 11 16.
Article in English | MEDLINE | ID: covidwho-2119277

ABSTRACT

Background: The combined impact of immunity and SARS-CoV-2 variants on viral kinetics during infections has been unclear. Methods: We characterized 1,280 infections from the National Basketball Association occupational health cohort identified between June 2020 and January 2022 using serial RT-qPCR testing. Logistic regression and semi-mechanistic viral RNA kinetics models were used to quantify the effect of age, variant, symptom status, infection history, vaccination status and antibody titer to the founder SARS-CoV-2 strain on the duration of potential infectiousness and overall viral kinetics. The frequency of viral rebounds was quantified under multiple cycle threshold (Ct) value-based definitions. Results: Among individuals detected partway through their infection, 51.0% (95% credible interval [CrI]: 48.3-53.6%) remained potentially infectious (Ct <30) 5 days post detection, with small differences across variants and vaccination status. Only seven viral rebounds (0.7%; N=999) were observed, with rebound defined as 3+days with Ct <30 following an initial clearance of 3+days with Ct ≥30. High antibody titers against the founder SARS-CoV-2 strain predicted lower peak viral loads and shorter durations of infection. Among Omicron BA.1 infections, boosted individuals had lower pre-booster antibody titers and longer clearance times than non-boosted individuals. Conclusions: SARS-CoV-2 viral kinetics are partly determined by immunity and variant but dominated by individual-level variation. Since booster vaccination protects against infection, longer clearance times for BA.1-infected, boosted individuals may reflect a less effective immune response, more common in older individuals, that increases infection risk and reduces viral RNA clearance rate. The shifting landscape of viral kinetics underscores the need for continued monitoring to optimize isolation policies and to contextualize the health impacts of therapeutics and vaccines. Funding: Supported in part by CDC contract #200-2016-91779, a sponsored research agreement to Yale University from the National Basketball Association contract #21-003529, and the National Basketball Players Association.


Subject(s)
COVID-19 , Dermatitis , Humans , Aged , SARS-CoV-2/genetics , RNA, Viral , Retrospective Studies , COVID-19/epidemiology , Antibodies, Viral
2.
Epidemics ; 40: 100620, 2022 09.
Article in English | MEDLINE | ID: covidwho-1983027

ABSTRACT

Social gatherings can be an important locus of transmission for many pathogens including SARS-CoV-2. During an outbreak, restricting the size of these gatherings is one of several non-pharmaceutical interventions available to policy-makers to reduce transmission. Often these restrictions take the form of prohibitions on gatherings above a certain size. While it is generally agreed that such restrictions reduce contacts, the specific size threshold separating "allowed" from "prohibited" gatherings often does not have a clear scientific basis, which leads to dramatic differences in guidance across location and time. Building on the observation that gathering size distributions are often heavy-tailed, we develop a theoretical model of transmission during gatherings and their contribution to general disease dynamics. We find that a key, but often overlooked, determinant of the optimal threshold is the distribution of gathering sizes. Using data on pre-pandemic contact patterns from several sources as well as empirical estimates of transmission parameters for SARS-CoV-2, we apply our model to better understand the relationship between restriction threshold and reduction in cases. We find that, under reasonable transmission parameter ranges, restrictions may have to be set quite low to have any demonstrable effect on cases due to relative frequency of smaller gatherings. We compare our conceptual model with observed changes in reported contacts during lockdown in March of 2020.


Subject(s)
COVID-19 , Communicable Diseases , COVID-19/epidemiology , Communicable Disease Control , Communicable Diseases/epidemiology , Humans , Pandemics/prevention & control , SARS-CoV-2
3.
Antimicrob Agents Chemother ; 66(7): e0019222, 2022 07 19.
Article in English | MEDLINE | ID: covidwho-1901914

ABSTRACT

A consensus methodology for the pharmacometric assessment of candidate SARS-CoV-2 antiviral drugs would be useful for comparing trial results and improving trial design. The time to viral clearance, assessed by serial qPCR of nasopharyngeal swab samples, has been the most widely reported measure of virological response in clinical trials, but it has not been compared formally with other metrics, notably model-based estimates of the rate of viral clearance. We analyzed prospectively gathered viral clearance profiles from 280 infection episodes in vaccinated and unvaccinated individuals. We fitted different phenomenological pharmacodynamic models (single exponential decay, bi-exponential, penalized splines) and found that the clearance rate, estimated from a mixed effects single exponential decay model, is a robust pharmacodynamic summary of viral clearance. The rate of viral clearance, estimated from viral densities during the first week following peak viral load, provides increased statistical power (reduced type 2 error) compared with time to clearance. Antiviral effects approximately equivalent to those with currently used and recommended SARS-CoV-2 antiviral treatments, notably nirmatrelvir and molnupiravir, can be detected from randomized trials with sample sizes of only 35 to 65 patients per arm. We recommend that pharmacometric antiviral assessments should be conducted in early COVID-19 illness with serial qPCR samples taken over 1 week.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Clinical Trials as Topic , Humans , Kinetics , Treatment Outcome , Viral Load
4.
Am J Epidemiol ; 191(8): 1519-1520, 2022 Jul 23.
Article in English | MEDLINE | ID: covidwho-1806267
6.
Science ; 371(6532): 916-921, 2021 02 26.
Article in English | MEDLINE | ID: covidwho-1532943

ABSTRACT

Limited initial supply of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine raises the question of how to prioritize available doses. We used a mathematical model to compare five age-stratified prioritization strategies. A highly effective transmission-blocking vaccine prioritized to adults ages 20 to 49 years minimized cumulative incidence, but mortality and years of life lost were minimized in most scenarios when the vaccine was prioritized to adults greater than 60 years old. Use of individual-level serological tests to redirect doses to seronegative individuals improved the marginal impact of each dose while potentially reducing existing inequities in COVID-19 impact. Although maximum impact prioritization strategies were broadly consistent across countries, transmission rates, vaccination rollout speeds, and estimates of naturally acquired immunity, this framework can be used to compare impacts of prioritization strategies across contexts.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Health Priorities , Mass Vaccination , Adolescent , Adult , Age Factors , Aged , Antibodies, Viral/blood , COVID-19/epidemiology , COVID-19/mortality , COVID-19/transmission , COVID-19 Vaccines/immunology , Child , Humans , Immunogenicity, Vaccine , Middle Aged , Models, Theoretical , SARS-CoV-2/immunology , Seroepidemiologic Studies , Young Adult
7.
PLoS Biol ; 19(7): e3001333, 2021 07.
Article in English | MEDLINE | ID: covidwho-1305572

ABSTRACT

SARS-CoV-2 infections are characterized by viral proliferation and clearance phases and can be followed by low-level persistent viral RNA shedding. The dynamics of viral RNA concentration, particularly in the early stages of infection, can inform clinical measures and interventions such as test-based screening. We used prospective longitudinal quantitative reverse transcription PCR testing to measure the viral RNA trajectories for 68 individuals during the resumption of the 2019-2020 National Basketball Association season. For 46 individuals with acute infections, we inferred the peak viral concentration and the duration of the viral proliferation and clearance phases. According to our mathematical model, we found that viral RNA concentrations peaked an average of 3.3 days (95% credible interval [CI] 2.5, 4.2) after first possible detectability at a cycle threshold value of 22.3 (95% CI 20.5, 23.9). The viral clearance phase lasted longer for symptomatic individuals (10.9 days [95% CI 7.9, 14.4]) than for asymptomatic individuals (7.8 days [95% CI 6.1, 9.7]). A second test within 2 days after an initial positive PCR test substantially improves certainty about a patient's infection stage. The effective sensitivity of a test intended to identify infectious individuals declines substantially with test turnaround time. These findings indicate that SARS-CoV-2 viral concentrations peak rapidly regardless of symptoms. Sequential tests can help reveal a patient's progress through infection stages. Frequent, rapid-turnaround testing is needed to effectively screen individuals before they become infectious.


Subject(s)
COVID-19 Nucleic Acid Testing/statistics & numerical data , COVID-19/diagnosis , RNA, Viral/genetics , SARS-CoV-2/genetics , Virus Replication/genetics , Virus Shedding/genetics , Adult , Athletes , Basketball , COVID-19/epidemiology , COVID-19/pathology , COVID-19/virology , Convalescence , Humans , Male , Prospective Studies , Public Health/methods , SARS-CoV-2/growth & development , Severity of Illness Index , United States/epidemiology
8.
Elife ; 102021 03 05.
Article in English | MEDLINE | ID: covidwho-1119624

ABSTRACT

Establishing how many people have been infected by SARS-CoV-2 remains an urgent priority for controlling the COVID-19 pandemic. Serological tests that identify past infection can be used to estimate cumulative incidence, but the relative accuracy and robustness of various sampling strategies have been unclear. We developed a flexible framework that integrates uncertainty from test characteristics, sample size, and heterogeneity in seroprevalence across subpopulations to compare estimates from sampling schemes. Using the same framework and making the assumption that seropositivity indicates immune protection, we propagated estimates and uncertainty through dynamical models to assess uncertainty in the epidemiological parameters needed to evaluate public health interventions and found that sampling schemes informed by demographics and contact networks outperform uniform sampling. The framework can be adapted to optimize serosurvey design given test characteristics and capacity, population demography, sampling strategy, and modeling approach, and can be tailored to support decision-making around introducing or removing interventions.


Subject(s)
COVID-19/epidemiology , Adolescent , Adult , Age Factors , Aged , Bayes Theorem , COVID-19/diagnosis , COVID-19 Serological Testing , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Middle Aged , Pandemics , SARS-CoV-2/isolation & purification , Seroepidemiologic Studies , Uncertainty , Young Adult
9.
Nat Commun ; 11(1): 4674, 2020 09 16.
Article in English | MEDLINE | ID: covidwho-772965

ABSTRACT

SARS-CoV-2-related mortality and hospitalizations differ substantially between New York City neighborhoods. Mitigation efforts require knowing the extent to which these disparities reflect differences in prevalence and understanding the associated drivers. Here, we report the prevalence of SARS-CoV-2 in New York City boroughs inferred using tests administered to 1,746 pregnant women hospitalized for delivery between March 22nd and May 3rd, 2020. We also assess the relationship between prevalence and commuting-style movements into and out of each borough. Prevalence ranged from 11.3% (95% credible interval [8.9%, 13.9%]) in Manhattan to 26.0% (15.3%, 38.9%) in South Queens, with an estimated city-wide prevalence of 15.6% (13.9%, 17.4%). Prevalence was lowest in boroughs with the greatest reductions in morning movements out of and evening movements into the borough (Pearson R = -0.88 [-0.52, -0.99]). Widespread testing is needed to further specify disparities in prevalence and assess the risk of future outbreaks.


Subject(s)
Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Residence Characteristics/statistics & numerical data , Transportation/statistics & numerical data , Adolescent , Adult , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/transmission , Female , Health Status Disparities , Humans , Middle Aged , New York City/epidemiology , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/transmission , Pregnant Women , Prevalence , SARS-CoV-2 , Young Adult
10.
Lancet Infect Dis ; 20(10): 1151-1160, 2020 10.
Article in English | MEDLINE | ID: covidwho-607553

ABSTRACT

BACKGROUND: The isolation of symptomatic cases and tracing of contacts has been used as an early COVID-19 containment measure in many countries, with additional physical distancing measures also introduced as outbreaks have grown. To maintain control of infection while also reducing disruption to populations, there is a need to understand what combination of measures-including novel digital tracing approaches and less intensive physical distancing-might be required to reduce transmission. We aimed to estimate the reduction in transmission under different control measures across settings and how many contacts would be quarantined per day in different strategies for a given level of symptomatic case incidence. METHODS: For this mathematical modelling study, we used a model of individual-level transmission stratified by setting (household, work, school, or other) based on BBC Pandemic data from 40 162 UK participants. We simulated the effect of a range of different testing, isolation, tracing, and physical distancing scenarios. Under optimistic but plausible assumptions, we estimated reduction in the effective reproduction number and the number of contacts that would be newly quarantined each day under different strategies. RESULTS: We estimated that combined isolation and tracing strategies would reduce transmission more than mass testing or self-isolation alone: mean transmission reduction of 2% for mass random testing of 5% of the population each week, 29% for self-isolation alone of symptomatic cases within the household, 35% for self-isolation alone outside the household, 37% for self-isolation plus household quarantine, 64% for self-isolation and household quarantine with the addition of manual contact tracing of all contacts, 57% with the addition of manual tracing of acquaintances only, and 47% with the addition of app-based tracing only. If limits were placed on gatherings outside of home, school, or work, then manual contact tracing of acquaintances alone could have an effect on transmission reduction similar to that of detailed contact tracing. In a scenario where 1000 new symptomatic cases that met the definition to trigger contact tracing occurred per day, we estimated that, in most contact tracing strategies, 15 000-41 000 contacts would be newly quarantined each day. INTERPRETATION: Consistent with previous modelling studies and country-specific COVID-19 responses to date, our analysis estimated that a high proportion of cases would need to self-isolate and a high proportion of their contacts to be successfully traced to ensure an effective reproduction number lower than 1 in the absence of other measures. If combined with moderate physical distancing measures, self-isolation and contact tracing would be more likely to achieve control of severe acute respiratory syndrome coronavirus 2 transmission. FUNDING: Wellcome Trust, UK Engineering and Physical Sciences Research Council, European Commission, Royal Society, Medical Research Council.


Subject(s)
Communicable Disease Control/methods , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Models, Theoretical , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Basic Reproduction Number , Betacoronavirus , COVID-19 , Contact Tracing/methods , Contact Tracing/statistics & numerical data , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Humans , Incidence , Mass Screening , Patient Isolation , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Quarantine , SARS-CoV-2 , United Kingdom/epidemiology
11.
Science ; 368(6493): 860-868, 2020 05 22.
Article in English | MEDLINE | ID: covidwho-57045

ABSTRACT

It is urgent to understand the future of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) transmission. We used estimates of seasonality, immunity, and cross-immunity for human coronavirus OC43 (HCoV-OC43) and HCoV-HKU1 using time-series data from the United States to inform a model of SARS-CoV-2 transmission. We projected that recurrent wintertime outbreaks of SARS-CoV-2 will probably occur after the initial, most severe pandemic wave. Absent other interventions, a key metric for the success of social distancing is whether critical care capacities are exceeded. To avoid this, prolonged or intermittent social distancing may be necessary into 2022. Additional interventions, including expanded critical care capacity and an effective therapeutic, would improve the success of intermittent distancing and hasten the acquisition of herd immunity. Longitudinal serological studies are urgently needed to determine the extent and duration of immunity to SARS-CoV-2. Even in the event of apparent elimination, SARS-CoV-2 surveillance should be maintained because a resurgence in contagion could be possible as late as 2024.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/virology , Models, Biological , Pneumonia, Viral/virology , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus OC43, Human/physiology , Disease Outbreaks , Disease Transmission, Infectious , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , SARS-CoV-2 , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL